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110. Composition, Pressure, and Temperature Relationships in 
Binary A xeotro pic Systems. 

By E. A. COULSON and E. F. G. HERINGTON. 
Equations previously derived on thermodynamic grounds for expression of the change of 

composition in binary azeotropes with temperature and pressure are re-examined and developed. 
The exact thermodynamic relationships are of little practical utility unless supplemented with 
an equation of state in some form. 

Using an approximate statistical !hermodynamical treatment, i t  is shown that azeotropes 
formed in " strictly regular solutions (as defined by Guggenheim and Fowler) would obey the 
empiricaI rules of azeotmyic behaviour, and it is therefore suggested that many real azeotropes 
closely conform to these regular or normal azeotropes. 

This leads to  the development of general equations relating azeotropic composition to  
temperature and pressure and other determinable quantities. Comparison of calculated with 
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experimental data shows that the equations fit the experimental results very closely in some 
instances. 

The semi-empirical methods used by Kireev and by Carlson and Colburn for calculation of 
azeotropic composition are examined, and it is concluded that no better agreement between 
theory and experiment was obtained than is afforded by the statistical thermodynamical 
approximate treatment. 

Although azeotropes formed in normal liquids should, and do, conform closest to the 
requirements of the present treatment, it also appears that the general relationships retain some 
validity even if the components are abnormal (Le., are associated or solvated). 

IN recent years a considerable extension of the use of azeotropes in fractional distillation practice 
has been made and it is now recognised that azeotrope formation is of common occurrence and 
may often be turned to advantage in devising separation processes. The variations of the 
azeotropic composition with boiling point and distillation pressure are of obvious practical 
importance. A fresh interest is thus lent to such theoretical conclusions regarding these 
properties of constant-boiling mixtures as thermodynamical or statistical reasoning will afford. 
In the present discussion, restricted to binary systems, our object has been to trace out as 
directly as possible the general relationship between the variables and to extract useful 
approximate equations which can be applied to experimental results. These equations have 
been tested on one or two well-studied examples where very reliable experimental data are 
available. That the treatment now offered is based on a critical re-examination of the diverse 
methods previous workers had adopted in approaching the problems will be apparent from the 
form in which it is developed. 

The systems w e  consider have two components and two phases (liquid, vapour) in equilibrium, 
the total pressure being that of the vapour phase. Hence by the phase rule in the unrestricted 
case there are two degrees of freedom; i.e., if the liquid composition and the temperature be 
fixed then the composition of the vapour and its total pressure are also determined. It will be 
assumed that the laws of ideal gases apply to  the vapour phase and, therefore, that the partial 
pressures of the two components are proportional to the respective mo1.-fractions. When 
azeotropism occurs in such systems it is defined by the condition that the liquid boils unchanged, 
Le., the compositions of vapour and liquid expressed in mo1.-fractions are identical. Hence 
+l/P = N ,  and p2/P = N,, and moreover, the volatility ratio 01 (= ~lN,/p&J equals 1 (j5, 
and p ,  are the partial pressures of components 1 and 2 in equilibrium at total pressure P with a 
solution containing N ,  mols. of component 1 and N, mols. of component 2). Other related 
criteria are that a maximum or minimum in the curve connecting boiling point at constant 
pressure with liquid composition occurs at an azeotropic composition, and so also does a 
minimum or maximum in the curve of total pressure when, at constant temperature, pressure is 
plotted against liquid composition. The variation of the composition of an azeotrope with 
pressure and boiling point was originally taken as evidence for the view that azeotropes are not 
chemical compounds. 

A deduction previously given by Redlich and Schutz (1. Amer. Chem. SOC., 1944, 66, 1007) 
of the formal thermodynamic relationships between these variations of pressure, composition, 
and boiling point in azeotropic systems requires modification, and the complete derivation of the 
necessary equations will therefore be presented. The phase rule indicates that binary two-phase 
systems possess two degrees of freedom. To deduce the relation between pressure and 
temperature, we take T (the temperature) and N ,  as variables and write P = f (N , ,T )  and hence 

dP aP aP dN 
d T - ( ~ ) ~ , + ( ~ ) ; ~ 2  ' * . * * 

For an azeotrope (aP/alV,). = 0, since this implies a maximum or minimum in the P-N, curve 
a t  constant T ,  and hence 

(1) * ' ' 

dP (n) == ,m)R, . . . . . . . . . 
The subscript az. indicates that equation (2) refers to the azeotrope. But aP = aPl + aP2, 
hence from (2) 

and since for the azeotrope p,/P = N,, P,/P = N,, and N ,  = 1 - N,,  and since in general 

~ a ( a  Inp/aT>N = HJR 
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where H is the partial molal heat of vaporisation of a component from solution, we obtain after 
substitution and rearrangement 

. . . . . . .  * (3) 
pr-j =-  (1 - N,)H, + NsH, 
d ( W )  82. R 

Equation (3) connects the variation in azeotropic pressure with the reciprocal of azeotropic 
boiling point and the composition and heat quantities shown on the right. When T changes, 

N, alters, and H I  and H,, besides being temperature dependent, also depend upon the 
composition, being defined by 

- - 

H, = (afflanl)T,n* and H2 = (aH/an2)T,?11 

where H is the latent heat of vaporisation of a solution containing n, and n, mols. of the 
respective components. While, therefore, (3) has the form of the Clausius-Clapeyron equation, 
it has no practical utility except when the numerator on the right can be treated as constant 
over temperature and composition ranges. 

To derive the variation of azeotropic composition with temperature we choose T and N ,  as 
the two independent variables, in accordance with the phase-rule requirement for any binary 
two-phase system, and write the volatility ratio a = f(T,N,) and hence 

For an azeotropic system tc = 1, thus cc = constant and da/dT = 0, hence from (4) 

laa \ 

Equation (5) connects the variation in azeotropic composition and boiling point with partial 
derivatives of a at points where 01 = 1. It differs from the expression given by Redlich and 
Schutz (Zoc. cit.), who assumed a could be a function of three independent variables. 

The right-hand side of (5) may be developed as follows : 

The Duhem-Margules equation in the form N, . a In f iP , /N ,  + N, . a In f i2/N2 = 0 (here 
N ,  + N ,  = 1) is combined with the foregoing to yield 

. . . . . . . .  (7) 

and from (5), (6), and (7) we obtain 
a In PIIA aT ) 

-5 . . . . . . . .  (8) d N  

(a 1:gJN2)T - - 
in which the second term of the numerator may be replaced by ( H I  - H,) /RT2  but it must be 
remembered that in the general case H ,  and H ,  are functions of N,, i . e . ,  of T. 

The combination of (8) with (3) can be made in order to derive the change of composition 
with pressure. 

Clearly, equation (S), like (3), is of little practical utility, since the right-hand terms are more 

- - 
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difficult to measure than those on the left and the explicit functional relationship between N, 
and T cannot be determined without integration. 

Kireev (Acta Physicochim., U.S.S.R., 1941, 14, 371) sought to elucidate the general 
relationship between azeotropic compositions, pressures, and temperatures and the properties 
of the pure components by a somewhat different approach but one based nevertheless on 
thermodynamical reasoning. As his mathematical derivations are difficult to interpret and are 
obscured by a number of printer's errors they will be developed directly in the nomenclature 
used earlier in this paper. The free energy of formation from the pure components of any 
binary liquid mixture may be written 

AG = - RT (N, In P,"lP,  + N, In P,"/P,) 
where #lo and pzo are the vapour pressures of the two pure components. For a hypothetical 
ideal mixture of the same composition, p1 = N d I o  and pz = N d Z 0 ,  so that in this case the free 
energy 

AG' = - RT(N, In l/Nl + N, In 1fNz) 

The difference between AG and AGO' is defined as the excess free energy " AGE, and clearly 

AGE = RT ( N l l n ~ l / N , ~ , o  + N,lnP,/N,$,") . . . . . . (9) 

Differentiation with respect to N, a t  constant T, and remembering that N ,  = 1 - N,, gives 

= RT l n h I + l n -  j 3 ]  L- P z  
. . . . . * . . . . . . . . . . . 

The last simplification is obtained by using the Duhem-Margules relationship. 
is true for any binary liquid mixture. 
so that 

Equation (10) 
For an azeotrope the second term on the right is zero 

(aAGB/aN2)~ = RT In P1O/p2" . . . . . . . . . (11) 

It should be noted that (11) is true only for cc = 1, and this applies only to the azeotropic 
condition in contrast with equations (5) and (8) which hold for any constant values of a. Clearly 
also (11) can only be used to obtain a relationship between azeotropic composition and 
temperature if a functional relationship between A@, N,, and T can be found. 

It will now be seen that the strictly thermodynamic approach has not proved very profitable, 
and that a less rigorous treatment may well afford a more practically useful basis for discussing 
quantitatively the occurrence and behaviour of azeotropes. 

An Approximate Treatment based on Statistical Thermodynamical Considerations.-It has 
been usual to compare the properties of solutions with the assumed properties of hypothetical 
ideal solutions and to measure deviations from ideal behaviour. Ideal solutions cannot form 
azeotropes and therefore are unsuitable in many ways for introduction into the discussion of 
azeotropy. We suggest that strictly regular solutions " as defined by Guggenheim and 
Fowler ( I '  Statistical Thermodynamics ", p. 351) are a suitable class of solutions to be regarded 
as capable under certain conditions of yielding what we may call ' I  normal or regular '.' azeotropes. 
We shall show that certain real azeotropic mixtures closely conform in behaviour with the 
azeotropes to which strictly regular solutions may be expected to give rise. 

The conditions for the formation of a strictly regular solution are : (1) The components 
should pack in the same way. (2) The molar volumes should be sufficiently alike so that a 
mixture of the two kinds can also pack in the same way as each of the single liquids. (3) The 
ratio of the free volumes of the two pure liquids should not differ from unity by more 
than approximately 30%. (4) The molar volumes ( V I J  V,) and free volumes of both 
components should remain unaltered when the liquids are mixed. (5) In  any given con- 
figuration of volume V given by V = N,V, + N,V, the potential energy W may be regarded 
as the sum of contributions from pairs of closest neighbours. 

A crude statistical thermodynamical treatment of strictly regular solutions which assumes 
that the entropy of mixing of such a solution is the same as that of an ideal solution yields 
equations of the form 

p ,  = P I o  N ,  eWdfl2lET and = p2" N, eWdN,'lRT . . . . . . (12) 
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where P1, pz, Plo, !20, N,, and N ,  have the same significance as before and Wab is the mixing 
energy (Guggenheim and Fowler, op. cit.). For such a mixture 

where H1 is the excess heat over that of an ideal solution. For an ideal solution H1 = 0, 
Wab = 0, and equations (12) reduce to Raoult's equation. 

The more refined treatment of strictly regular solutions (Guggenheim and Fowler, op. cit., 
p. 358) indicates that equations (12) are a good first approximation to the fuller treatment 
(see also Kirkwood, J .  PhysicaE Chem., 1939, 43, 97, who arrives a t  a similar conclusion) and 
they will be taken therefore as the basis for our discussion of azeotropism. We note first that 
these equations are of the same form as the Margules equation as derived by Porter (Trans. 
Faruday SOC., 1920, 16, 336), where W a b / R T  = 8, a constant, since the Porter equation applies 
at constant temperature. The Porter equation is known to correlate fairly accurately the 
partial pressure of a component and the liquid composition (at constant temperature) except 
when one or other component is highly associated (see, e.g., Glasstone, " Textbook of Physical 
Chemistry ", 1940, p. 699). 

The application of a set of equations such as (12) to describe the behaviour of an azeotropic 
system is simply made. The equations are writtenin the form p1 = filoNly, and p z  = pzoN2yz1 
where y1 and y, are the activity coefficients of the components. For an azeotrope, 
~ ~ N 2 / ~ z N l  = 1, and hence 

For the particular case under consideration y1 = eW*N2a/RT and yz = ewdN1'/RT, so after 
substitution and rearrangement we obtain, remembering that N ,  + N, = 1, 

In P l 0 I P 2 O  + YlIY2  = 0 

Nz(az.) = Q ( I  - RT/Wab . ln p I o / P 2 O )  . . . . . . . (14) 

A number of conclusions can be drawn from equation (14). 

equation (14) must lie between 0 and 1, i.e. 
Conditions for  the existence of an azeotrope. For an azeotrope to have existence, M2(az.) in 

In plo/p2O < WabjRT and In p2O/pI0 < WablRT 

Since Wab is in general not large, Ip," - pzol must be small for an azeotrope to be formed. This 
is the physical basis of the empirical rule given by Timmermans ( ' I  Les Solutions Concentrhes ", 
1936, p. 161), vzz., that azeotropy is greatly favoured when the pure components are a close- 
boiling pair. 

The sign of Wab, in equation (12), determines whether 
deviations from ideality are positive or negative. If Wab is positive in sign we have positive 
deviations, and if an azeotrope is formed we have maxima in curves of pressure-composition 
(at constant temperature) and minima in curves of b. p.-composition (at constant pressure). 
On the other hand, if Wab is negative the above maxima and minima are interchanged. The 
only factor which tends to make Wab negative is compound formation between the components, 
e.g., solvation of hydrogen chloride by water; thus in a maximum b. p. azeotrope this effect 
must outweigh those factors which operate in the reverse sense, namely, differences between the 
internal pressure, polarity] molecular size, or degree of association of the components in the 
liquid state. Thus maximum b. p. azeotropes occur far less commonly than the opposite type. 

Direction of change of azeotropic composition with temperature. In  the statistical 
thermodynamical derivation of equation (12) it is assumed that Wab is invariant with 
temperature, an assumption considered by Guggenheim and Fowler (op. cit.) to be a close 
approximation to reality. We will therefore take Wab as independent of temperature, and 
hence by differentiating equation (14) with respect to T, 

Maximum and minimum azeotropes. 

. . (15) 

Clearly the sign of dN,/dT depends upon the sign of Wab, so that ceteris paribus the variation of 
concentration with temperature for maximum b. p. azeotropes,will be in the reverse sense to 
that of the minimum b. p. type. 

It has already been shown 
that for most azeotropes lfiIo - Pzol must be small and hence In p , o / ~ z o  - 0, so that the sign of 
the bracketed quantity is determined by the second term, which is usually numerically the 
larger. This second term can be expanded in two alternative forms, which will be considered 
separately. 

We next consider the terms in the*bracket in equation (15). 
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(1) By using the Clausius-Clapeyron equation we may write 

where HI and H ,  are the latent heats of vaporisation of the pure components 1 and 2. For a 
minimum b. p. azeotrope W a b  is positive, so that - Hence if H,> H I  
then the right-hand side of equation (15) is positive, and a rise in temperature will cause an 
increase in the concentration of the component with the higher latent heat of vaporisation in 
the pure state. 

Since W a b  is negative for a maximum b. p. azeotrope, the converse conclusions result for 
this type by similar reasoning. 

These rules are identical with the form of Wrewsky's empirical rule as usually quoted (see, 
e g . ,  Young, " Distillation Principles and Processes," p. 61). 

(2) Alternatively we may write 

R l W a b  is negative. 

The approximation is justified because in general lpIo - p2"I is small. I f  dpl"/dT > d+,"/dT 
then the sign of the bracketed quantity in equation (15) is positive, and dN2/dT will be negative, 
i.e., the azeotropic composition moves towards that component which has the lower d$"/dT 
(in the pure state) as temperature decreases. This is equivalent to the statement that the 
percentage of that component in a binary azeotropic mixture which has the lower value of 
dp"/dT increases as the pressure decreases, which is the rule arrived at empirically by Merriman 
(quoted by Young, op. tit., p. 61). 

Our 
consideration of strictly regular solutions has shown that the properties derived for the azeotropes 
which they form accord closely with the behaviour of real azeotropes as expressed in empirical 
generalisations. This lends support to the suggestion that normal or regular azeotropes should 
be considered as a class of strictly regular solutions. 

We now examine 
equation (14) with the aim of seeing how far simple approximate quantitative expressions 
derivable from it fit actual data recorded for real azeotropes. 

The simple integrated form of the Clausius-Clapeyron equation yields for the pure 
components 

where C, and C, are constants. 

We thus see that Merriman's and Wrewsky's rules may be given an identical basis. 

Approximate relation between azeotro9ic composition and boiling point. 

Inp," = - Hl/RT + C, and lnp,," = - Ha/RT + C, 
Insertion of these relationships in (14) and rearrangement yields 

where C = C, - C,. 
Equation 716) clearly indicates a direct linear relation between the mo1.-fraction N, and the 

azeotropic b. p., T. Naturally, a similar relation exists for N, and T ,  since the components are 
not distinguished in any way. 

Reference to plots of experimental data for the azeotropic systems benzen-cyclohexane 
and ethyl acetate-carbon tetrachloride shows that in these cases where the solutions approach 
strict regularity a straight-line relation is obeyed (Redlich and Schutz, Eoc. cit.). How- 
ever, several other examples show the same behaviour although it is improbable that 
these can be classified as strictly regular (ethyl alcohol-chloroform, methyl alcohol-methyl 
acetate, heptane-ethyl alcohol, toluene-ethyl alcohol ; see Redlich and Schutz, ZOG.  it.) . Such 
plots may clearly be useful even for systems in which one of the components is associated, e g . ,  
ethyl alcohol-ethyl acetate; but they will not serve to correlate the data on the system 
water-ethyl alcohol, which is known to be very irregular-here the heat of mixing depends 
markedly on the temperature. Similar experimental data for the well-studied systems ethyl 
alcohol-ethyl acetate and hydrogen chloride-water (Mefriman, J., 1913,103, 1801 ; Bonner and 
Wallace, J .  Amer. Chem. SOL, 1930, 52, 1747) are plotted in Fig. 1. 

The extrapolation of such plots of N, against T to N ,  = 0 and N ,  = 1 permits the 
temperatures to be found at which azeotropes cease to exist, but is of course subject to the 
condition that the latent heats HI and H, and W a b  remain constant and independent of 
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temperature. The upper temperature may be above the critical temperature, or in its vicinity, 
and the lower temperature below the freezing point of one of the components. In  addition, 
minimum b. p. azeotropes may separate into a two-phase liquid system as the temperature 
is lowered; this occurs when W a b / R T >  2 (for detailed discussion see Guggenheim and Fowler, 
Zoc. cit., and Kirkwood, ZOG. cit.). Hence in practice there may not be an upper or lower 
temperature limit for the azeotropy, although in some cases both or either may exist. 

FIG. 1. 

(1) Ethyl acetate-ethyl alcohol : Data of Merriman as quoted by Carlson and Colburn (Ind. Eng. Chem., 

(2) Hydrogen chloride-water : Data of Bonner and Wallace (J. Amer. Chem. SOC., 1930, 52, 1747). 
1942, 34, 581). ' 

Af$roximate relations between total $ressure of arz azeotropic mixture and temperature, and 
From the second equation of (12), inserting jb, = N,P between the pressure and com9osition. 

(since the gases are perfect) and eliminating N ,  by means of equation (14), we have 

As shown above - P,*l is in general small; hence the term containing (In j510/ j520)2 on 
the right-hand side of the above equation can be neglected. Hence 

- A/RT + D . . . . . . . . . . .  (17) 
- - 

which is of the simple Clausius-Clapeyron form and shows that - (1 - N,)H, + N,H, in 
equation (3) is approximately constant for a strictly regular solution. 

Elimination of T between (17) and (16) gives an equation relating azeotropic composition 
and pressure of the form 

From (17), D + In P as T + co and hence D > In P and we may write 

N ,  - A,/(ln P - D )  + C, . . . . . . . . . .  (18) 

N, - - - - %  ( I + - - -  "> + c N A " l n P  + C" . . (19) a+. 
where A " and C" are constants. 
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FIG. 2. 
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(1) Ethyl acetate-ethyl alcohol : Data of Merriman (J., 1913, 103, 1801) as quoted by Carlson and Colburn 

(2) Hydrogen chloride-water : Data of Bonner and Wallace (j. Amer. Chem. SOC., 1930, 52, 1747). 
(Ind. Eng. Chem., 1942, 34, 581). 

FIG. 3. 

In Fig. 2, In P is plotted against 1/T for the azeotropic systems ethyl acetate-ethyl alcohol 
and hydrogen chloride-water (the experimental values for P and T being taken from the data of 
Merriman, and of Bonner and Wallace, Zocc. cit.). A good straight line results in each case. 
In Fig. 3, N, is plotted against In P for the same systems. Here the curves show definite 
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departures from linearity and it appears that equation (18) is not accurately approximated by 
equation (19). An alternative and more exact expression for the relationship between N ,  and 
In P is discussed later [see equation (22)]. 

A n  Examination of Other Methods for the Calculation of Azeotro9ic Relabionshi$s.-Kireev 
(Zoc. cit.) has discussed the calculation of variations in azeotropic composition with temperature 
and pressure on the basis of equation (11). He suggests that  for many solutions experimental 
values of A@ satisfy an empirical relationship of the form AGE = N,N,W where K1 is a constant 
and independent of N ,  but possibly a function of T .  It can readily be shown that this is 
equivalent to assuming that the properties of such solutions are described by the Margules- 
Porter equation at constant temperature. Thus, insertion of equations (12) in (9), which 
is true without restriction for any liquid solution, gives 

AGE = R T [ N ,  In eWabNa'IRT + N ,  In eWdN?IRq 
= N,N, Wab  

. . . . . . . . . .  = NlhT,K1 where K 1  = W a b  (20) 
Differentiation of (20) with respect to N ,  at constant T and combination with equation (11) 
yields 

which is necessarily identical with equation (14) already derived. Insertion of the azeotropic 
limitation in equation (9) by writing p1 = N,P and p ,  = N,P, combination with (20), and 
elimination of K1 between the resulting equation and (21) gives 

(1 - 2Nz)(1n P - In p,") = N Z 2  (In plo - In pzo)  

. . . . . . . .  (1 - 2N2)K1 = RT In plo/pZo (21) 

which can be solved for N, by adding N,,(ln P - In $lo) to both sides whence 

(1 - N,)Z (In P - In plO) = NZ2(ln P - In p,") 

and . . . . . . .  
In Pao - In P 
In pl0 - In P 

(The negative root of & y is chosen in order to make N ,  < 1.) 
Equation (22), which was first derived by Kireev, relates the composition of the azeotrope 

to its pressure and the vapour pressures of the pure components at the boiling point of the 
azeotrope. In the derivation no assumption regarding the temperature-dependence of K1 (in 
equation 20) need be made, although, as we have seen, for strictly regular solutions K1 should 
vary only slightly with temperature as i t  equals Wab. Kireev found that the equation. 
satisfactorily correlated experimental data for a number of systems, which, as this discussion 
reveals, should be the case provided they satisfy the Margules-Porter equation at constant 
temperature. 

The variation of composition with temperature was considered by Kireev on the basis of a 
suggestion that K1T = constant = C, for certain solutions. Insertion of this condition in (21) 
and replacement of the In $10/p20 term by equivalent latent heat terms from the Clausius- 
Clapeyron equation yields 

. . . . . . .  T + C,T2] (23) N ,  (a..) = f[l + c, H1 - H 2  

where C, = (C, - Cl)R/C, and C,, C,, and C, have been defined already. 
This expression contains a term involving the square of the temperature, but if C, is small, 

or if the temperature ranges over which measurements are made is restricted, it may be difficult 
to detect a deviation from linearity due to the T2 term in a plot of N ,  against T.  In fact, 
experimental data for numerous systems are fitted by a linear relation, as has been shown 
already, and (23) will not be discussed further. 

A method used by Carlson and Colburn ( Ind.  Eng. Chem., 1942, 34, 581) for calculating the 
change in the composition with temperature of the azeotrope ethyl acetate-ethyl alcohol involved 
several successive operations. First, the activity coefficients, yl and yz, of the two components 
were evaluated from y1 = PJpl0 and y2 = P,JPao. Here, Paas is the total pressure at the 

R B  
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boiling point of the azeotrope and plo and P20 are the vapour pressures of the pure components 
a t  this temperature. Data at atmospheric pressure were used for this calculation of y1 and 
y,, and the values so obtained were used to calculate the van Laar constants. From these 
constants the ratio y1/y2 was calculated at, and plotted against, different compositions at 
constant temperature and then, on the assumption that the van Laar constants are not dependent 
on temperature, the composition at other temperatures was found from the relationship 
y1/y2 = p20/f1.0, which is true for the azeotrope, in conjunction with the plot of y1/y2 against 
N, .  To facllitate the calculation, experimental values of Plo/p2O were plotted against 
temperature. 

It is of interest to compare the calculations made in this way with those made more directly 
from equation (14). By rearrangement the latter equation yields 

(2N2* - 1) x T lnpl0/p2" . . . . . 
T' (1n$,"/P,")* 

(ZN, - 1) = 

where the starred values refer to a known composition of the azeotrope (N2*) a t  one temperature 
(T*). If for the pure components fi10/P20 is known as a function of T, then N,, the azeotropic 
composition a t  any boiling point T ,  can be secured from equation (24). 

In the table the observed values of N, and T (Merriman, loc. cit.) are compared with the 
calculated. The composition a t  760 mm. pressure and at a temperature of 71.8" was taken as 
the known value in both calculations. 

Ethyl acetate-ethyl alcohol azeotrope. 
Composition, N, = mo1.-fraction of ethyl acetate. 

Calculated. 
1 

Temp. Exptl. by Carlson and Colburn. by eqn. (24). 
18.7' 0.734 0.787 0.706 
40.5 0-660 0.677 0.639 
56.3 0.601 0-602 0-596 
71.8 0.539 (0.539) (0.5 3 9) 
83.1 0.490 0.498 0.500 
91.4 0.451 0.480 0.480 

0.022 0.019 
Standard deviation of an individual calculated value : 

Clearly, the experimental data are fitted as well by equation (24) as by the Carlson and 
Colburn procedure. 

Validity of the APproximate Treatment.-It has been shown that all the methods of calculation 
we have discussed rest upon an assumption that either the Margules-Porter or the van Laar 
equation adequately describes the behaviour of the liquid-vapour systems at constant 
temperature. The methods of relating variation of azeotropic composition with temperature 
used by Kireev and by Carlson and Colburn have each an empirical element; Kireev takes 
KIT as constant, and Carlson and Colburn assume that the A and B constants of the van Laar 
equations are temperature-independent-an assumption with no real theoretical justification. 

Statistical thermodynamical reasoning suggests that the equations (12) which serve as basis 
for the present approximate treatment should describe to a good approximation the behaviour 
of strictly regular solutions.* 

It follows from the definition of strictly regular solutions (p. 600), and from the conclusion 
that in general the boiling points of the components must be close together if an azeotrope is 
to exist, that an azeotrope formed between normal liquids will usually conform to the behaviour 
of a regular azeotrope and be described by the equations we have used. It is rather surprising, 

* Since this manuscript was prepared, a memoir by Prigogine (J .  Phys. Radium, 1944, 5, 185) has 
become available. This author also considers azeotropes formed from strictly regular solutions and 
derives an equation equivalent to (14). He demonstrates that this equation is compatible with the 
empirical rule of Roozeboom connecting the direction of change of composition with temperature. The 
relationship between log P and 1/T is also studied. An equation of the type 

is deduced where TI and Ts are the boiling points of the pure components and T the boiling point of 
the azeotrope. The validity of the equation in the simple form where H I I T ,  = H , / T ,  was tested by 
using experimental data for azeotropes formed between halides and ethyl alcohol. 
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nevertheless, that some a t  least of the azeotropic mixtures containing associated components 
also appear to conform fairly closely to equations (16), (17), and (19) (c.g., ethyl acetate-ethyl 
alcohol) and so also do some azeotropes in which one component is heavily solvated by the other 
(e.g., hydrogen chloridt+water) . 

A preliminary report on the relationships which we have derived has appeared in Nature 
(1946, 158, 198). 

The work described above has been carried out as part of the research programme of the Chemical 
Research Laboratory and this paper is published by permission of the Director of the Laboratory. 
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